Engine Coolant System | Water Pump Radiator Thermostat Heater Core

The cooling system's function is to maintain an efficient engine operating temperature during all engine speeds and operating conditions. The cooling system is designed to remove approximately one-third of the heat produced by the burning of the air-fuel mixture. When the engine is cold, the system cools slowly or not at all. This allows the engine to warm quickly.

 

Coolant is drawn from the radiator outlet and into the water pump inlet by the water pump. Some coolant will then be pumped from the water pump, to the heater core, then back to the water pump. This provides the passenger compartment with heat and defrost.
Coolant is also pumped through the water pump outlet and into the engine block. In the engine block, the coolant circulates through the water jackets surrounding the cylinders where it absorbs heat.
The coolant is then forced through the cylinder head gasket openings and into the cylinder heads. In the cylinder heads, the coolant flows through the water jackets surrounding the combustion chambers and valve seats, where it absorbs additional heat.
Coolant is also directed to the throttle body. There it circulates through passages in the casting. During initial start up, the coolant assists in warming the throttle body. During normal operating temperatures, the coolant assists in keeping the throttle body cool.
From the cylinder heads, the coolant is then forced to the thermostat. The flow of coolant will either be stopped at the thermostat until the engine is warmed, or it will flow through the thermostat and into the radiator where it is cooled and the coolant cycle is completed.
Operation of the cooling system requires proper functioning of all cooling system components. The cooling system consists of the following components:

The engine coolant is a solution made up of a 50-50 mixture of anti freeze coolant and clean drinkable water. The coolant solution carries excess heat away from the engine to the radiator, where the heat is dissipated to the atmosphere.

The pressure cap is a cap that seals and pressurizes the cooling system. It contains a blow off or pressure valve and a vacuum or atmospheric valve. The pressure valve is held against its seat by a spring of predetermined strength, which protects the radiator by relieving pressure if it exceeds 15 psi. The vacuum valve is held against its seat by a spring, which permits opening of the valve to relieve vacuum created in the cooling system as it cools off. The vacuum, if not relieved, might cause the radiator to collapse.

The pressure cap allows pressure in the cooling system to build up. As the pressure builds, the boiling point of the coolant goes up as well. Therefore, the coolant can be safely run at a temperature much higher than the boiling point of the coolant at atmospheric pressure. The hotter the coolant is, the faster the heat moves from the radiator to the cooler, passing air. The pressure in the cooling system can get too high, however. When the pressure exceeds the strength of the spring, it raises the pressure valve so that the excess pressure can escape. As the engine cools down, the temperature of the coolant drops and a vacuum is created in the cooling system. This vacuum causes the vacuum valve to open, allowing outside air into the cooling system. This equalizes the pressure in the cooling system with atmospheric pressure, preventing the radiator from collapsing.

The coolant recovery system consists of a plastic coolant recovery reservoir and overflow tube. The recovery reservoir is also called a recovery tank or expansion tank. It is partially filled with coolant and is connected to the radiator fill neck with the overflow tube. Coolant can flow back and forth between the radiator and the reservoir.

In effect, a cooling system with a coolant recovery reservoir is a closed system. When the pressure in the cooling system gets too high, it will open the pressure valve in the pressure cap. This allows the coolant, which has expanded due to being heated, is allowed to flow through the overflow tube and into the recovery reservoir. As the engine cools down, the temperature of the coolant drops and a vacuum is created in the cooling system. This vacuum opens the vacuum valve in the pressure cap, allowing some of the coolant in the reservoir to be siphoned back into the radiator. Under normal operating conditions, no coolant is lost. Although the coolant level in the recovery reservoir goes up and down, the radiator and cooling system are kept full. An advantage to using a coolant recovery reservoir is that it eliminates almost all air bubbles from the cooling system. Coolant without bubbles absorbs heat much better than coolant with bubbles.

The water pump is a centrifugal vane impeller type pump. The pump consists of a housing with coolant inlet and outlet passages and an impeller. The impeller is a flat plate mounted on the pump shaft with a series of flat or curved blades or vanes. When the impeller rotates, the coolant between the vanes is thrown outward by centrifugal force. The impeller shaft is supported by one or more sealed bearings. These sealed bearings never need to be lubricated. With a sealed bearing, grease cannot leak out, and dirt and water cannot get in.
The purpose of the water pump is to circulate coolant throughout the cooling system. The water pump is driven by the crankshaft via the drive belt.

The thermostat is a coolant flow control component. It's purpose is to regulate the operating temperature of the engine. It utilizes a temperature sensitive wax-pellet element. The element connects to a valve through a piston. When the element is heated, it expands and exerts pressure against a rubber diaphragm. This pressure forces the valve to open. As the element is cooled, it contracts. This contraction allows a spring to push the valve closed.

When the coolant temperature is below 91°C (195°F), the thermostat valve remains closed. This prevents circulation of the coolant to the radiator and allows the engine to warm up quickly. After the coolant temperature reaches 91°C (195°F), the thermostat valve will open. The coolant is then allowed to circulate through the thermostat to the radiator where the engine heat is dissipated to the atmosphere. The thermostat also provides a restriction in the cooling system, even after it has opened. This restriction creates a pressure difference which prevents cavitation at the water pump and forces coolant to circulate through the engine block.

More Auto Repair Help


Leave your comments

Post comment as a guest

0

Comments (3)
   ---Subscribe To Your Comment   

  • Guest - Cris

    My 2000 buick park avenue water pump is leaking and radiator building pressure will just water pump cause this

  • Guest - Shane

    Heater ore replacement

  • Guest - helen crane

    My 1999 Oldsmobile Alero is history. 105,000 miles and blown head gasket. Mechanic wanted new engine at cost of 4,000. I traded for a new Buick. No more Oldsmobile cars for me.